While it is difficult to foresee all chemicals, chemical combinations, and environments to which RPI Re-Flex TPO Roofing Membrane may be subjected, the following information is offered to help guide your decisions. The best means to determine whether a substance is compatible with the Re-Flex TPO membrane is a laboratory analysis which can take some time to perform.

Some of the following factors affect the severity of a chemical in direct exposure to RPI Re-Flex TPO Roofing membrane.

1. Higher temperatures generally have a greater effect on severity of the chemical on the membrane.
2. The concentration of the chemical has a direct effect on degree of compatibility. Usually, the greater the dilution, the greater the potential for compatibility.
3. Occasional exposure to the chemical is typically less severe than continuous exposure.

When roofs are severely contaminated with another substance, such as grease, oil or a pool of chemicals, the membrane will be affected in one way or another. It is not recommended to allow any contaminate to remain on the roof surface over time, as it will compromise the reflectivity of the membrane and allow dirt and foreign substances to build up.

The following chart is suggested to rate the relative effects of the chemical on the RPI Re-Flex TPO Roofing membrane according to the following scale:

A = Negligible effect
B = Limited effect
C = Extensive Absorption
D = Extensive Attack

** May produce cracking in material under stress.
-- No data available

Note: When a concentration is not shown, the substance is pure or concentrated.
<table>
<thead>
<tr>
<th>Environment</th>
<th>Concentration %</th>
<th>Environment</th>
<th>Concentration %</th>
<th>Environment</th>
<th>Concentration %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid (glacial)</td>
<td>97 A B</td>
<td>Barium sulfate</td>
<td>A A</td>
<td>Barium chloride</td>
<td>A A</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>50 A A</td>
<td>Barium sulfide</td>
<td>A A</td>
<td>Barium chloride</td>
<td>A A</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>40 A A</td>
<td>Beer</td>
<td>A A</td>
<td>Chrome alum</td>
<td>A A</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>10 A A</td>
<td>Benzene</td>
<td>C D</td>
<td>Chlorine (gas)</td>
<td>D D</td>
</tr>
<tr>
<td>Acetone</td>
<td>A A</td>
<td>Benzoic acid</td>
<td>A A</td>
<td>Chromic acid</td>
<td>80 **B --</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>B B</td>
<td>Benzyl alcohol</td>
<td>A A</td>
<td>Chlorosulfonic acid</td>
<td>D D</td>
</tr>
<tr>
<td>Acriflavine (2% soln in H2O)</td>
<td>A A</td>
<td>Bismuth carbonate</td>
<td>A A</td>
<td>Chromic/sulfuric acid</td>
<td>D D</td>
</tr>
<tr>
<td>Acrylic emulsions</td>
<td>A A</td>
<td>Borax</td>
<td>A A</td>
<td>Caster oil</td>
<td>A --</td>
</tr>
<tr>
<td>Aircraft exhaust (gas & jet & jet)</td>
<td>A A</td>
<td>Boric acid</td>
<td>A A</td>
<td>Cetyl alcohol</td>
<td>A --</td>
</tr>
<tr>
<td>Airport environment (tires & gases)</td>
<td>A A</td>
<td>Calcium carbonate</td>
<td>A A</td>
<td>Calcium hydroxide</td>
<td>A A</td>
</tr>
<tr>
<td>Aluminum chloride</td>
<td>A A</td>
<td>Calcium chloride</td>
<td>50 A A</td>
<td>Calcium phosphate</td>
<td>50 A --</td>
</tr>
<tr>
<td>Aluminum fluoride</td>
<td>A A</td>
<td>Calcium hydroxide</td>
<td>A A</td>
<td>Calcium carbonate</td>
<td>A A</td>
</tr>
<tr>
<td>Aluminum sulfate</td>
<td>A A</td>
<td>Calcium hydrochlorite bleach</td>
<td>20 A B</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Alums (all types)</td>
<td>A A</td>
<td>Calcium nitrate</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonia gas (dry)</td>
<td>A A</td>
<td>Calcium phosphate</td>
<td>50 A --</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonia (aqueous)</td>
<td>30 A --</td>
<td>Calcium chloride</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium carbonate</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium chloride</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium fluoride</td>
<td>20 A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium hydroxide</td>
<td>10 A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium metaphosphate</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium persulfate</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium sulfide</td>
<td>A A</td>
<td>Carbon dioxide (dry)</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Ammonium thiocyanate</td>
<td>A A</td>
<td>Carbon dioxide (wet)</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Amyl acetate</td>
<td>B C</td>
<td>Carbon dioxide (gas)</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Amyl alcohol</td>
<td>A B</td>
<td>Carbon disulfide</td>
<td>B C</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Amyl chloride</td>
<td>C C</td>
<td>Carbon monoxide</td>
<td>A A</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Aniline</td>
<td>A A</td>
<td>Carbon tetrachloride</td>
<td>C C</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Animal fat/grease</td>
<td>A B</td>
<td>Caster oil</td>
<td>A --</td>
<td>Calcium sulfite</td>
<td>A A</td>
</tr>
<tr>
<td>Anisole</td>
<td>B B</td>
<td>Chlorine (gas)</td>
<td>D D</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Antimony chloride</td>
<td>A A</td>
<td>Chlorobenzene</td>
<td>C C</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Aqua regia</td>
<td>**C **C</td>
<td>Chloroform</td>
<td>C D</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Aviation gasol (gasoline)</td>
<td>C D</td>
<td>Chlorosulfonic acid</td>
<td>D D</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Aviation turbine fuel</td>
<td>C D</td>
<td>Chrome alum</td>
<td>A A</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Barium carbonate</td>
<td>A A</td>
<td>Chromic/sulfuric acid</td>
<td>D D</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Barium chloride</td>
<td>A A</td>
<td>Chromic acid</td>
<td>80 **B --</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Barium hydroxide</td>
<td>A A</td>
<td>Chromic acid</td>
<td>50 **B **B</td>
<td>Chloroform</td>
<td>C D</td>
</tr>
<tr>
<td>Environment</td>
<td>Concentration</td>
<td>Temperature °F (ºC)</td>
<td>Environment</td>
<td>Concentration</td>
<td>Temperature °F (ºC)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Chromic acid</td>
<td>10</td>
<td>**B **B **B</td>
<td>Fruit juices</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cider</td>
<td>A</td>
<td>A</td>
<td>Furfural</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Citric acid</td>
<td>10</td>
<td>A A</td>
<td>Gasoline (the higher the octane the greater the affect)</td>
<td>C D</td>
<td></td>
</tr>
<tr>
<td>Copper chloride</td>
<td>A</td>
<td>A</td>
<td>Gear box oil</td>
<td>B C</td>
<td></td>
</tr>
<tr>
<td>Copper cyanide</td>
<td>A</td>
<td>A</td>
<td>Gelatin</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Copper nitrate</td>
<td>A</td>
<td>A</td>
<td>Glucose</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Copper fluoride</td>
<td>A</td>
<td>A</td>
<td>Glycol</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>A</td>
<td>A</td>
<td>Hydrochloric acid</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Cottonseed oil</td>
<td>A</td>
<td>B</td>
<td>Hydrochloric acid</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cuprous chloride</td>
<td>A</td>
<td>A</td>
<td>Hydrofluoric acid</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Cyclohexanol</td>
<td>A</td>
<td>B</td>
<td>Hydrofluoric acid</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>B C</td>
<td>C</td>
<td>Hydrogen peroxide</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Decalin</td>
<td>C C</td>
<td>C</td>
<td>Hydrogen peroxide</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Detergents</td>
<td>2</td>
<td>A A</td>
<td>Hydrogen peroxide</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Developers (photographic)</td>
<td>A A</td>
<td>A</td>
<td>Hydrogen peroxide</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Dibutyl phthalate</td>
<td>B C</td>
<td>B C</td>
<td>Hydrogen peroxide</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Dihydroxyethylene</td>
<td>C</td>
<td>--</td>
<td>Hydrogen peroxide</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Diethanolamine</td>
<td>A</td>
<td>A</td>
<td>Hydrogen peroxide</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Disoccyethyl phthalate</td>
<td>B C</td>
<td>C</td>
<td>Hydrogen peroxide</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Emulsifiers</td>
<td>A</td>
<td>A</td>
<td>Hydrogen peroxide</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>B</td>
<td>B</td>
<td>Hydrogen peroxide</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>96</td>
<td>A A</td>
<td>Hydrogen peroxide</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>A</td>
<td>A</td>
<td>Hydrogen chloride gas (dry)</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>A</td>
<td>A</td>
<td>Hydrogen sulfide</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Ethyl ether</td>
<td>C</td>
<td>--</td>
<td>Hydroquinone</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Ethyl chloride</td>
<td>C C</td>
<td>C</td>
<td>Inks</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Ethylene dichloride</td>
<td>B</td>
<td>--</td>
<td>Iodine tincture</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>B</td>
<td>--</td>
<td>Isopropyl alcohol</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Fatty acids (Cn)</td>
<td>A A</td>
<td>A A</td>
<td>Jet Fuel (kerosene based)</td>
<td>C D</td>
<td></td>
</tr>
<tr>
<td>Ferric chloride</td>
<td>A</td>
<td>A</td>
<td>Jet Fuel (kerosene based)</td>
<td>C D</td>
<td></td>
</tr>
<tr>
<td>Ferric nitrate</td>
<td>A</td>
<td>A</td>
<td>Kerosene</td>
<td>C D</td>
<td></td>
</tr>
<tr>
<td>Ferric sulfate</td>
<td>A</td>
<td>A</td>
<td>Ketones</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ferrous chloride</td>
<td>A</td>
<td>A</td>
<td>Lactic acid</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Ferrous sulfate</td>
<td>A</td>
<td>A</td>
<td>Lanolin</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Fluorosilicic acid</td>
<td>A</td>
<td>A</td>
<td>Lead acetate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>40</td>
<td>A A</td>
<td>Linseed oil</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Formic acid</td>
<td>A</td>
<td>--</td>
<td>Lubricating oil (petroleum based)</td>
<td>B C</td>
<td></td>
</tr>
<tr>
<td>Formic acid</td>
<td>10</td>
<td>A A</td>
<td>Magenta dye (aque. solvit)</td>
<td>2 A A</td>
<td></td>
</tr>
<tr>
<td>Fructose</td>
<td>A</td>
<td>A</td>
<td>Magnesium carbonate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>Concentration</td>
<td>Temperature °F (ºC)</td>
<td>Environment</td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>A A</td>
<td></td>
<td>Plating solutions, chromium</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Magnesium hydroxide</td>
<td>A A</td>
<td></td>
<td>Plating solutions, copper</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Magnesium nitrate</td>
<td>A A</td>
<td></td>
<td>Plating solutions, gold</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>A A</td>
<td></td>
<td>Plating solutions, indium</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Magnesium sulfite</td>
<td>A A</td>
<td></td>
<td>Plating solutions, lead</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Meat juices</td>
<td>A A</td>
<td></td>
<td>Plating solutions, nickel</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Mercuric chloride 40</td>
<td>A A</td>
<td></td>
<td>Plating solutions, rhodium</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Mercuric cyanide</td>
<td>A A</td>
<td></td>
<td>Plating solutions, silver</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>A A</td>
<td></td>
<td>Plating solutions, tin</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Mercurous nitrate</td>
<td>A A</td>
<td></td>
<td>Plating solutions, zinc</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>A B</td>
<td>Petroleum ether (B.P. 100-140ºC)</td>
<td>C D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>A --</td>
<td></td>
<td>Potassium bicarbonate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Milk and its products</td>
<td>A A</td>
<td></td>
<td>Potassium bromate</td>
<td>10 A A</td>
<td></td>
</tr>
<tr>
<td>Mineral oil</td>
<td>B C</td>
<td></td>
<td>Potassium bromide</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Molasses</td>
<td>A A</td>
<td></td>
<td>Potassium carbonate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Motor oil (conventional)</td>
<td>B C</td>
<td></td>
<td>Potassium chlorate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Motor oil (synthetic)</td>
<td>B C</td>
<td></td>
<td>Potassium chloride</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>A A</td>
<td></td>
<td>Potassium chromate</td>
<td>40 A A</td>
<td></td>
</tr>
<tr>
<td>Nickel chloride</td>
<td>A A</td>
<td></td>
<td>Potassium cyanide</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Nickel nitrate</td>
<td>A A</td>
<td></td>
<td>Potassium dichromate</td>
<td>40 A A</td>
<td></td>
</tr>
<tr>
<td>Nickel sulfate</td>
<td>A A</td>
<td></td>
<td>Potassium ferricyanoide</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Nitric acid</td>
<td>Fuming D D</td>
<td></td>
<td>Potassium fluoride</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Nitric acid 70</td>
<td>**C D</td>
<td></td>
<td>Potassium hydroxide</td>
<td>50 A A</td>
<td></td>
</tr>
<tr>
<td>Nitric acid 60</td>
<td>**C D</td>
<td></td>
<td>Potassium hydroxide</td>
<td>10 A A</td>
<td></td>
</tr>
<tr>
<td>Nitric acid 10</td>
<td>A D</td>
<td></td>
<td>Potassium nitrate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>50-50 Nitric-Hydrochloric acid</td>
<td>**C D</td>
<td></td>
<td>Potassium perchlorate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>50-50 Nitric-Sulfuric Acid</td>
<td>**C D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>A A</td>
<td></td>
<td>Potassium permanganate</td>
<td>20 A A</td>
<td></td>
</tr>
<tr>
<td>Oleic acid</td>
<td>A B</td>
<td></td>
<td>Potassium sulfate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Olive oil</td>
<td>A A</td>
<td></td>
<td>Potassium sulfide</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Oxalic acid (aqueous)</td>
<td>50 A B</td>
<td></td>
<td>Potassium sulfite</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Paraffin</td>
<td>A B</td>
<td></td>
<td>Propyl alcohol</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Paraffin wax</td>
<td>A A</td>
<td></td>
<td>Pyridine</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Petrol (gasoline)</td>
<td>C D</td>
<td></td>
<td>Silicone oil</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>A A</td>
<td></td>
<td>Soap solution (concentrated)</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Phosphoric acid 95</td>
<td>A B</td>
<td></td>
<td>Sodium acetate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Plating solutions, brass</td>
<td>A A</td>
<td></td>
<td>Sodium bicarbonate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Plating solutions, cadmium</td>
<td>A A</td>
<td></td>
<td>Sodium bicarbonate</td>
<td>A A</td>
<td></td>
</tr>
</tbody>
</table>
RPI Re-Flex TPO
Chemical Resistance Guide

<table>
<thead>
<tr>
<th>Environment</th>
<th>Concentration</th>
<th>Temperature °F (ºC)</th>
<th>Environment</th>
<th>Concentration</th>
<th>Temperature °F (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium bisulfite</td>
<td>A A</td>
<td></td>
<td>Tartaric acid</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium borate</td>
<td>A A</td>
<td></td>
<td>Tetrahydrofuran</td>
<td>C D</td>
<td></td>
</tr>
<tr>
<td>Sodium bromide oil solution</td>
<td>A A</td>
<td></td>
<td>Toluene</td>
<td>C D</td>
<td></td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>A A</td>
<td></td>
<td>Transformer oil</td>
<td>B C</td>
<td></td>
</tr>
<tr>
<td>Sodium chlorate</td>
<td>A A</td>
<td></td>
<td>Trichloroacetic acid</td>
<td>10 A A</td>
<td></td>
</tr>
<tr>
<td>Sodium chlorite 2</td>
<td>A A</td>
<td></td>
<td>Triethylamine</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium chlorite 5</td>
<td>A A</td>
<td></td>
<td>Turpentine</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>Sodium chlorite 10</td>
<td>A A</td>
<td></td>
<td>Urea</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium cyanide</td>
<td>A A</td>
<td></td>
<td>Vaseline</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium dichromate</td>
<td>A A</td>
<td></td>
<td>Vegetable oils (general)</td>
<td>A B</td>
<td></td>
</tr>
<tr>
<td>Sodium ferriyanide</td>
<td>A A</td>
<td></td>
<td>Vinegar</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium hydroxide 50</td>
<td>A A</td>
<td></td>
<td>Water (distilled, soft, hard & vapor)</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium hydroxide 10</td>
<td>A A</td>
<td></td>
<td>Wet chlorine gas</td>
<td>-- D</td>
<td></td>
</tr>
<tr>
<td>Sodium hypochlorite 20</td>
<td>A A</td>
<td></td>
<td>Whisky</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium nitrate</td>
<td>A A</td>
<td></td>
<td>White paraffin</td>
<td>A B</td>
<td></td>
</tr>
<tr>
<td>Sodium nitrate</td>
<td>A A</td>
<td></td>
<td>White spirit</td>
<td>B C</td>
<td></td>
</tr>
<tr>
<td>Sodium nitrate</td>
<td>A A</td>
<td></td>
<td>Wines</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium silicate</td>
<td>A A</td>
<td></td>
<td>Xylene</td>
<td>C D</td>
<td></td>
</tr>
<tr>
<td>Sodium sulfate</td>
<td>A A</td>
<td></td>
<td>Yeast</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium sulfide 25</td>
<td>A A</td>
<td></td>
<td>Zinc chloride</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Sodium sulfite</td>
<td>A A</td>
<td></td>
<td>Zinc oxide</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>A A</td>
<td></td>
<td>Zinc sulfate</td>
<td>A A</td>
<td></td>
</tr>
<tr>
<td>Stannic chloride</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfates of calcium & magnesium</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfates of potassium & sodium</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric acid 98</td>
<td>**C D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric acid 60</td>
<td>B C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric acid 50</td>
<td>B C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfuric acid 10</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-50 Sulfuric-NitricAcid</td>
<td>**C D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugars and syrups</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfamic acid</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tallow</td>
<td>A B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannic acid 10</td>
<td>A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The data shown are the result of laboratory tests and are intended only as a guide. No performance warranty is intended or implied and RPI guarantees and limited warranties do not cover damage due to oil, grease or chemicals. Ratings were determined by visual examination of coated fabric samples after contact with test fluid for 28 days at room temperature. When considering RPI Re-Flex TPO roofing membrane for a specific application, it is important to study other requirements such as permeability, service temperature, concentration, size to be contained, etc. A sample of RPI Re-Flex TPO roofing membrane should be tested in actual service before specification. When impractical, tests should be devised which simulate actual service conditions as closely as possible. Consult with RPI Technical Services Department for further recommendations. This table is presented and accepted at user's risk.